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Abstract

Thispaper describesthe fundamental physicalmotiva-

tionsfor small-scaleminimum surface-effectdesign,and

presents a three degree-of-freedom micromanipulator

design that incorporates a minimum surface.effect ap-

proach. The primary focus of the design is the split-tube

flexure, a unique small-scale revolute joint that exhibits a

considerably larger range of motion and significantly

better multi-axis revolute joint characteristics than a

conventional flexure. The development of this joint

enables the implementation of a smaU-scale spatially-

loaded revolute joint-based manipulator with well-
behaved kinematic characteristics and without the back-

lash and stick-slip behavior that would otherwise prevent

precision control.

1 Introduction

Generalized manipulation entails control of both

position and force based quantities. Effective implemen-

tation of such controlis largely influenced by the open-

loop behavior of the manipulator. In particular,the

presence of hard nonlinearities,such as backlash and

Coulomb friction,resultsin significantdeteriorationof

positionand force control. The study of direct-drive

robots,forexample, was borne out of the need toimple-

ment precisionpositionand forcecontrolof robot ma-

nipulatorsfor purposes of mechanical interaction.A

direct-drivedesign significantlyreduces the amount of

backlashand Coulomb frictioninthecontrolplant.The

eliminationof thesehard nonlinearitiesenableseffective

and accurateposition,force,impedance, or admittance

controloftherobotmanipulator.

Due to the physics of scaling, devices that operate on

a microscopic scale are influenced by highly nonlinear

surface forces to a much greater degree than those of a

conventional scale. Consequently, an effective microma-

nipulator that will enable dexterous manipulation in a

microscopic environment cannot simply be fabricated as a
scaled-down version of a conventional scale robot.

Instead, successful development of a microrobot capable

of accurate and competent force-controlled microma-

nipulation will necessitate elimination or intelligent
minimization of surface force behavior.

1.1 Scaling
The types of forces that dominate mechanical dy-

namic behavior on a microscopic scale axe different than
those that dictate motion on a conventional scale. As an

example, consider small insects which can stand on the
surface of still water, supported only by surface tension.

The same surface tension is present when humans come
into contact with water, but on a human scale the associ-

ated forces are typically insignificant. The world in which

humans live is governed by the same forces as the world
in which these small insects live, but the forces are present

in very different proportions. For the purpose of me-

chanical dynamics, the forces that govern motion can be

generalized into two types: body forces, which directly
influence the entire volume of an object, and surface

forces, which act primarily on the surface area of an

object. In mechanical environments, the former are

generally regarded as inertial forces, while the latter give
rise to fi'iction forces. Conventional scale mechanics are

influenced by both inertial and friction forces, though they

are typically influenced to a greater extent by the former.
Since the ratio of surface area to volume of an object

increases with decreasing size, microscopic mechanics are

of a significantly different nature. At a microscopic scale
(dimensions on the order of microns), the role of inertial

forces is considerably attenuated with respect to surface

forces, and some postulate that it becomes altogether

insignificant [6].

1.2 Minimum surface-effect design

The problem with this change in proportions is that
interaction dominated by friction (surface) forces is far

more difficult to control than that dominated by inertial

(body) forces. The inertial forces are fundamentally
smooth, while friction forces, especially those present

during sliding, are typically highly nonlinear (e.g.: stick-
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slip phenomena) and quite difficult to control. The net
effect of surface-force-dominated behavior is severe

deterioration of position and/or force control.

2 Flexure-Based Design

Conventional scale mechanisms rely on sliding and

rolling at a fundamental level. Kinematic linkages, for

example, cannot be constructed without revolute joints,
which almost universally incorporate roller or journal

bearings. On a conventional scale, such designs can

provide near frictionless rotation while bearing significant
loads. Since surface forces dominate small scale me-

chanics, however, geometrically similar designs at a

microscopic scale would exhibit significant stick-slip

behavior. A flexure-based joint, which utilizes deforma-

tion as a means of providing movement, is a viable small-

scale alternative to the conventional-scale revolute joint.

A diagram of a conventional flexure is shown in Figure 1.
The basic characteristics of conventional flexure joints

have been studied by several researchers [3,4,5]. If

properly designed, a flexure-based structure can approxi-
mate the motion of a complex kinematic linkage with

negligible stick-slip friction and no backlash. Addition-

ally, the absence of rolling and sliding surfaces produces a
device that is free of lubricants and thus extremely condu-

cive to clean environments. Preliminary investigations by

the authors indicate that a flexure-based micromanipulator

design exhibits well-behaved, stable position and force
control [2]. For purposes of multi-degree-of-freedom

manipulator design, however, conventional flexures have

several significant deficiencies. One particularly restric-

tive deficiency is the limited range of motion. Depending

on the geometry and material properties, a flexure will

begin exhibiting plastic deformation at ranges on the order
of five to ten degrees. In contrast, an ideal revolute joint

has an infinite range of motion. Another significant

problem with conventional flexures is the poor properties
exhibited when subjected to multi-axis loading. An ideal

revolute joint is infinitely rigid in all directions of loading

except about the desired axis of rotation. In contrast, a
conventional flexure exhibits a significant stiffness along

thc desired axis of rotatiofi and significant compliance

along all other axes of loading. A flexure-based joint, for

example, will exhibit twist-bend buckling when subjected

to twisting. The multi-axis behavior of conventional

flexure joints results in both kinematic and dynamic

problems, especially when utilizing non-collocated control

that rclies upon kinematic transformations for task-space

accuracy.

Figure I. Diagram of a conventional flexure joint, indicating
the nominal joint axis of rotation.

3 The Split-Tube Flexure

As mentioned previously, an ideal revolute joint is

characterized by zero stiffness along the axis of rotation

and infinite stiffness along all other axes of loading.

Conventional flexure joints offer the benefit of zero
backlash and Coulomb friction, but not without limita-

tions. Conventional flexure joints are constrained to a

small range of motion and demonstrate significant stiff-

ness along the axis of rotation and significant compliance

along other axes. The authors have developed a new
flexure that exhibits a considerably larger range of motion

and significantly better multi-axis revolute joint charac-
teristics than a conventional flexure. The design of the

joint is based upon contrasting the torsional compliance of

an open section with its stiffnesses in compression and

bending. The torsional mechanics of closed section and

open section members are fundamentally and significantly
different, while the bending and compressive mechanics

of the members are quite similar. This difference in
mechanics enables minimization of torsional stiffness and

maximization of all other stiffnesses in a nearly decoupled

manner.

3.1 The mechanics of open versus closed sections

Figure 2 shows two hollow shafts that are in every
manner identical except that one has a slit along its long

axis. Though geometrically similar, the mechanics of how
each bears a torsional load are quite different. For pur-

poses of torsional mechanics, the wholly intact shaft reacts
mechanically in the same mode as a solid shaft, while the

slitted shaft behaves mechanically as a thin flat plate.

This dissimilarity in behavior results in very different

torsional stiffnesses. Defining torsional stiffness as the

ratio of torque about the long axis to the angular deflec-
tion about the same, a stress analysis (assuming



Figure2. Closed(left)andopen(right)sectionhollow
shafts.

typicalpropertiessuchaslinearlyelastic,homogeneous,
isotropicmaterial)illustratesthedifferencesin torsional
mechanics.Thetorsionalstiffnessof theclosedsection,
kcs, is given by:

2,cG
=--R3t

k cj
L

and that of the open section, kos, given by:

2riG
_ _ Rt 3

ko,- 3L

where G is the shear modulus of elasticity, and L, R, and t

are the length, outside radius, and wall thickness of the

shaft, respectively. Since by definition, the geometry of a
thin-walled shaft is such that t<<R, the torsional stiffness

of the open section is significantly less than of its closed

counterpart. For example, a closed-section shaft of radius
R=2.5 mm and wall thickness t=O.05 mm would exhibit a

torsional stiffness approximately 7500 times that of a

geometrically similar open section.

Though the torsional mechanics of the open and

closed section shafts are quite different, the mechanics of

bending are in essence the same. Both open and closed
section shafts have a bending stiffness given by:

where E is the modulus of elasticity, and the other vari-

ables are as defined previously. Note that this stiffness is

quite similar to the torsional stiffness of a closed section

shaft. In fact, in the limit of t<<R, the joint structure
would have a zero torsional stiffness and an infinite

bending stiffness, emulating the ideal revolute joint

without the corresponding backlash and Coulomb friction.
This, in essence, characterizes tile design of the split-tube

flexure. Figure 3 shows photographs of a prototype of a

split-tube flexure hinge. Note that the axis

Figure 3. Photographs of split-tube flexure.

of rotation is along the bottom of the tube opposite the

split, and not through the center of the tube. Also, though

difficult to discern in the photographs of Figure 3, the

links adjoined by the flexure hinge remain parallel.

3.2 The split-tube versus the conventional flexure

An analytical comparison is useful in assessing the
relative mechanical characteristics of both a split-tube and

a conventional flexure. Figures 4 and 5 illustrate split-
tube and conventional flexure geometrys, respectively,

and define the loads and deflections from which relevant

stiffnesses can be determined. As previously mentioned,

the objective in the design of a flexure revolute joint is to

achieve a minimal stiffness along the axis of rotation and

relatively large stiffnesses along all other axes. The
authors refer to the stiffness along the revolute axis as the

revolute stiffness, which is defined by k r = r/8. The

off-axis stiffnesses of primary interest are the bending

stiffnesses, defined by kl, I = M I/Ol and k_,: = M,/_:
and the axial stiffnesses, defined by k,_ = F_/x and

k, 2 = F: / y. Also of primary interest when characteriz-
ing joint performance is the allowable range of motion

afforded by the joint, a characteristic determined by

material yield.

For purposes of comparison, a split-tube and a
conventional flexure were designed according to specifi-

cations that were determined by a combination of desired

manipulator performance characteristics and the
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Figure 4. Axes of loading for a split-tube flexure joint. Figure 6. Geometry of a split-tube flexure joint.
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Figure 5. Axes of loading for a conventional flexure joint. Figure 7. Geometry of a conventional flexure joint.

capabilities of the selected actuators. The two joints were

designed to have the same revolute stiffness kr, and since
the micromanipulator is a tendon-based device, the joints

were required to have the same axial stiffness k,_ and to
withstand a given minimum axial load FI. Additionally,

the two joints were designed of the same stainless steel

alloy. The resulting dimensions, as defined in Figures 6
and 7, are R=2.4 mm, t=0.05 mm, and L=9.5 mm for the

split-tube flexure, and h=0.2 mm, b=0.2 mm, and
/=5.4 mm for the conventional flexure. The resulting

stiffnesses, along with ihe ranges of motion, are given in
Table 1. The characteristics for the split-tube flexure

were experimentally verified. Experiments were addition-

ally incorporated to determine maximum load before

buckling, a mechanical quantity which is not as well

analytically characterized as stiffness or yield. These

experiments indicated that the flexures could withstand

approximately 8 Newtons before buckling, which is more
than 3 times the 2.4 Newton capability of the conventional

flexure. Table 2 incorporates the same information as

Table l, but represented instead as the relative character-

istics of the split-tube flexure with respect to the conven-
tional flexure. The ratios of kr and k,,i of the two flexures

were set equal by design. One can observe from Table 2

that all other off-axis stiffnesses of the split-tube flexure,

khl, kh:, and k,,, are three to four orders of magnitude

larger than the equivalent off-axis stiffnesses of the

conventional'flexure. Note also that the split-tube flexure

enables 150 degrees of motion, more than five

times that of the equivalent conventional flexure. This

comparison clearly illustrates the improved revolute joint

properties offered by the split-tube flexure.

Another significant difference between the split-tube
and conventional flexure involves the kinematic behavior

of the joints. An ideal revolute joint provides a fixed axis
of rotation so that the motion of one link with respect to

the adjoining link can be characterized as a pure rotation.

The illustration of Figure 1 depicts the instantaneous

revolute axis associated with a conventional flexure joint.

This axis does not remain fixed with respect to either link,

but rather translates in the plane as the links rotate. In

contrast, the split-tube flexure has a fixed axis of rotation

(opposite and parallel to the split), which enables well-
characterized kinematics with a minimal set of measure-

_ents.

PROPERTY CONVENTIONAL

FL E X U RE

0.00525 Nm/rad

SPLIT-TUBE

FLEXURE

0.00525 Nm/rad

kht 0.00525 Nm/rad 43.8 Nmlrad

k_., 0.00806 Nm/rad 43.8 Nm/rad

k,,t 1.53x 106N/m 1.45x 10 6 N/m

k,,, 540 N/m 1.45x l0 nN/m

+14.7 de_.rees0n_tv +77.9 de_rces

Table I. Comparison of conventional and split-tube flexure

revolute joint properties.



PROPERTY CHARACTERISTICS OF SPLIT-TUBE

RELATIVE TO CONVENTIONAL FLEXURE

k, I

k_I 8330

k_: 5440

k,1 0.95

k,2 2680

0,,_ 5.3

Table 2. Relative characteristics of the split-tube flexure

with respect to the conventional flexure.

4 Microrobot Design

The authors have incorporated the split-tube flexure

joints into the design of a three degree-of-freedom revo-
lute micromanipulator. A solid model of the manipulator

is shown in Figure 8. The manipulator was designed to be
used with a vision system afforded by an optical stereomi-

croscope, either for human use in a teleoperative sense, or
for machine use in an autonomous sense. The workspace

of an optical stereomicroscope is approximately 125 mm 3

(a cube 5 mm on a side) and the resolution approximately

1 _.m (a function of the wavelength of light). The ma-

nipulator was designed to have a maximum endpoint force

of approximately 100 milliNewtons along each taskspace
axis. Since inertial, damping, and elastic forces scale as

the geometric scaling factor to the fourth, third, and

second powers, respectively, the equivalent elastic (most
conservative) force in a workspace cube of 50 cm a side

would be 1000Newtons. The equivalent forces for

geometric similarity in predominately damping or inertial
environments would be 100 kiloNewtons and

10megaNewtons, respectively. Also, since human-

controlled telemanipulation is one of the targeted modes

of operation, the manipulator was designed for teleopera-

tive transparency, which generally requires position and
force bandwidths on the order of 15 and 300 Hertz,

respectively[l]. As mentioned previously, one of the

primary motives of the micromanipulator design was to
eliminate the highly nonlinear stick-slip friction that is

imminently present at small scales, in addition to elimi-

nating any backlash that is exhibited most by sliding and

rolling elements. The design philosophy is, in essence, to
circumvent intractable control problems by intelligent

mechanical design.

The manipulator incorporates a direct-drive semi-

parallel five-bar linkage revolute configuration. Manipu-

lator actu,ltion is provided by voice coil actuators that

interface with the manipulator via pre-tensioned push-pull

rod nlechanisms with knife-edge joints. The five-bar

actuators (BEI model LA 13-12-000) provide a continuous

force of seven Newtons over a stroke of approximately six

millimeters. The base actuator (BEI model LA15-33-000)

provides a continuous force of sixteen Newtons over a
stroke of approximately eleven millimeters. These

actuators provide the manipulator with a workspace of

approximately 8000 mm 3 (a cube 20 mm on a side) and a

maximum endpoint force approaching 500 milliNewtons.
The actuators are mounted in flexure suspensions, and

thus are devoid of stick-slip friction and backlash. The

actuator suspensions include strain-gage-based position
sensors for collocated feedback. Note that well-behaved

revolute joints are of great import when using sensors in

the actuator space, since task-space accuracy is dependent

upon well-known kinematic transformations. Force

sensing is provided by strain-gages near the manipulator

endpoint.

The link lengths of kinematic importance to the ma-

nipulator are both 40 mm long, which enables the ma-

nipulator to access the 8000 mm 3 workspace with joint

ranges of motion of approximately +25 degrees per joint.

Figure9 shows a solid model of the two degree-of-
freedom five-bar linkage. As shown in the figure, each

manipulator revolute joint consists of two split-tube
flexures rather than one. The double and single split-tube

configurations are referred to as compound and simple

configurations, respectively. Arranging the flexures in the

compound configuration offers significantly better overall

revolute joint behavior. Figure 10 illustrates the com-

pound and simple joint configurations, both of which are
constructed of tubes of equal radius and thickness, and

both having the same overall length. Mechanical analysis

Figure 8. Solid model of split-tube flexure-based. _oice-

coil-actuated three degree-of-frccdom mic_om:_-

nipulator.



Figure9.

Figure 10.

Solid model of two degree-of-freedom five-bar

linkage.

Diagram illustrating the compound (top) and the

simple (bottom) split-tube flexure configurations.

shows that for the revolute, axial, and bending stiffnesses

defined previously, the compound configuration exhibits
4 times the revolute stiffness, 64 times the axial stiffness,

and 16 times the bending stiffness of the simple joint

configuration. A flexure-based revolute joint can be

characterized by the ratio of revolute stiffness to axial
stiffness and the ratio of revolute stiffness to bending

stiffness, both of which would approach zero in the ideal

case. Though the absolute value of the revolute stiffness

is 4 times larger for the compound joint, the ratio of
revolute to axial stiffness and of revolute to bending

stiffness are 16 and 4 times smaller, respectively, than the

simple joint. The compound joint therefore offers better

joint behavior, and thus was selected for the microma-

nipulator configuration.

The micromanipulator is presently under construc-
tion. Once functional, the system performance will be

characterized and subsequently presented in a future

publication.

5 Conclusion

The authors have developed a new flexure-based

revolute joint that offers significantly better properties

than a conventional flexure. The joint:

• exhibits no backlash or stick-slip behavior,
• exhibits off-axis stiffnesses three to four or-

ders of magnitude greater than a comparable
conventional flexure,

• enables roughly five times the range of mo-

tion of a comparable conventional flexure,
and

• withstands roughly three times more load
than a conventional flexure.

The development of this joint enables the implementation

of a small-scale spatially-loaded revolute joint-based

manipulator with well-behaved kinematic characteristics
and without the backlash and stick-slip behavior that

would otherwise prevent precision control.
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